
Rigorous treatment of charge exchange, ionization, and collisional 
processes in neutral-beam-injected mirrors 

0. Demokan and V. Mirnov@ 
Physics Department, Middle East Technical University, Ankara, Turkey 

(Received 12 April 1994; accepted 19 September 1994) 

The ion distribution function is analytically studied in mirror machines with perpendicular injection. 
A uniform model is considered by assuming a square-well configuration for the magnetic field. The 
existence of the mirrors and the consequent electrostatic potential are represented by related 
boundary conditions on the ion distribution function. The Vlasov-Boltzmann equation is written 
with the explicit expressions for the charge exchange, electron impact ionization, ion-electron 
collision processes and solved for the steady state. The justification for neglecting the ion-ion 
collisions is provided. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The concept of a steady-state density in neutral-beam- 
injected mirror machines has been studied repeatedlyle dur- 
ing the past 30 years. The kinetic studies were based on the 
Fokker-Planck equations involving nonlinear terms, and the 
problem had to be treated numerically in most of these 
works.le4 Furthermore, due to the complicated dependence 
of the atomic processes on the particle energies, or due to the 
inadequacy of data, available earlier on the associated cross 
sections, these terms were either treated formally or disre- 
garded totally in the previous works. 

In this paper, the relevant collisional and atomic pro- 
cesses are discussed in line with the experimental data, and 
treated in their explicit, actual forms. A uniform model is 
considered by imposing a square-well type of configuration 
for the magnetic field. The beam injection is assumed to be 
in the perpendicular direction. The ion velocity and electron 
temperatures are assumed to be in the range, which allows 
the ion drag on the electrons to emerge as the dominant 
collisional process. More explicitly, this corresponds to the 
case, where the electron temperature is low enough to let the 
drag time needed by the ion to travel from the source point 
localized at high energy, to the loss cone boundary localized 
at low energy to be shorter than the ion-ion scattering time. 
Consequently, the ion-ion collisions result in a slight broad- 
ening of the angular distribution, close to that inherent to the 
actual neutral beam, whose angular distribution is approxi- 
mated to be a delta function in this work. The speed or en- 
ergy dependence of the ion distribution function can there- 
fore be analytically obtained by neglecting the diffusive 
terms due to ion-ion collisions, and thereby avoiding the 
nonlinear terms in the formal Fokker-Planck treatment. This 
distribution function can then be used to estimate the angular 
spread due to ion-ion collisions, and to verify that it is in- 
deed a minor correction for the bulk of the function. 

The losses through the mirrors are not explicitly dealt 
with, but instead introduced as a loss cone boundary condi- 
tion on the ion distribution function. That is, the velocity 
dependence is regarded as a step-like function, which is zero 
for velocities inside the loss cone boundary, and finite 
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otherwise.5,6 This step-like behavior is a consequence of ne- 
glecting the diffusive terms, which leads to the steepening of 
the ion distribution function around the loss cone boundary. 

Following the prescribed procedure, the Vlasov- 
Boltzmann equation is solved analytically for the steady- 
state distribution function. A self-consistent expression for 
the steady-state ion density is also derived. Finally, the opti- 
mization of the plasma and beam parameters, to achieve 
maximum steady-state density is discussed. 

II. THE RELEVANT COLLISIONAL AND ATOMIC 
PROCESSES 

The complete form of the Vlasov-Boltzmann equation 
for the ion distribution function can be formally written as 

J.f Jf F @ 
dt+"*-+- - -=-Vv,.J+Q(v), 

dr M dv (1) 

where f and M denote the ion distribution function and the 
ion mass, respectively, J is the ion flux in velocity space due 
to collisions, and Q(V) represents the source and loss terms 
for ions with velocity v. In this section, the collisional and 
the atomic processes contributing to the right-hand side will 
be considered in detail. 

According to Landau,7 the ith component of the ion flux 
can be written as 

-M-l af 

dVk 
Uikfp( V’)d3V ’ ) (2) 

where A is the Coulomb logarithm, p represents electrons 
and ions, k represents the components and 

uik=i”-“‘l~ik-(Vi-Vl)(Vk-V~) 

[v-v’13 . 
(3) 

To evaluate the contribution of electrons (P=e) to the ion 
flux, the electron distribution function is assumed to be Max- 
wellian, 

fe=n( s)3’2 exp( -g), (4) 
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where n is the plasma density, pze, T, , and u, are the elec- 
tron mass, temperature and velocity, respectively, After 
straightforward manipulations, the electron contribution to 
the ith component of the ion flux is obtained as 

Vi&e d3U,. (5) 

Since the ion velocity is usuahy much less than the electron 
velocity, it can be shown that the term 

u&e d3ve- 

and therefore 

J(,& - ! 

Concerning the component along v, the second term can be 
neglected for u%(T,/M)“~. The B component of Jce), aris- 
ing from the second term is much less than the B component 
of the flux due to ion-ion collisions (for ion velocities much 
Iess than electron thermal velocity), Since even the ion-ion 
collisions were explained to be negligible in the Introduction, 
the electron contribution to the ion flux can be written as 

J(e)= - CVf(v) , 

where 

(6) 

c= 

The contribution of the ion-ion collisions to the ion ff ux 
will be disregarded, due to the choice of the parameter range 
discussed in the Introduction. This contribution will be esti- 
mated later in the work, to verify that it is indeed a minor 
correction, concerning the bulk of the ion distribution func- 
tion. Thus Eq. (6) is assumed to give the total ion flux at this 
stage. We shall now proceed with the relevant atomic pro- 
cesses, contributing to Q(V) on the right-hand side of Eq. (I), 

The first process to be considered is the charge exchange 
between the neutral beam and the plasma ions. At a particu- 
lar magnetic field surface, the neutral beam having a density 
nb (less than the injection density, due to ionization) yields 
ions with the beam’velocity vb ) upon charge exchange with 
the plasma ions. The rate, at which the ion distribution func- 
tion increases at v=vb due to charge exchange can be written 
as 

t?,:<v)=nb(S(V-Vb) /- a,,([V-Vbl)f(v)IV-vbld’U, 

where a,,(lv-vbl) is the charge-exchange cross section, 
which is a function of the relative velocity. On the other 
hand, the plasma ions neutralized by the beam via charge 
exchange, escape from the system, yielding a rate of loss for 
the whole ion distribution f(v), given by 

Qex(~)=-nb~~‘ex(lV-Vbt)f(v)tV--~bl. (9) 

The next process to be considered is the ionization of the 
neutral beam, due to the electron and ion impact. Since elec- 
trons are clearly much more dominant, the latter will be ig- 
nored. This process also yields ions with the beam velocity, 
and the corresponding rate at which the ion distribution func- 
tion increases can be written as 

Qitv)=%&v-vb) fe(Ve)Cri(lV,--bl)lV,--bld3U,, 
f 

(10) 
where vj(lv, - vb}) is the cross section for the electron impact 
ionization. Since vb=3 u, , 

&i(V) “nbf%v---yb) s f,(V,)o;(Z.‘,>V, d3u, 

=nb,‘d(v-v,)(~,~,). (11) 
it must be noted that (FLU,) is the ionization rate coefficient 
due to electron impact, which depends on the electron tem- 
perature T, only. Although the electron temperature in mirror 
machines depends on the ion density and energy, as well as 
other parameters, it will be regarded as a given, constant 
quantity in this work. 

111. THE STEADY-STATE SOLUTlON 

The complete steady-state form of Eq. (1) for a uniform 
model can be written as, 

df(v) 
& (YXB). F=-V,-J”‘+Q(v). 

The term Jce) represents the ion flux due to electron-ion 
drag. The explicit form of Q(v), in principle consists of the 
sum of the charge exchange and ionization rates discussed in 
the previous section, and the loss rate through the mirrors. 
This loss rate will not be considered expiicitly in the term 
Q(v), but wiil be taken into account as a loss cone boundary, 
on the surface of which, the ion distribution drops to zero. In 
the standard approach,6 the ion distribution function is as- 
sumed to drop to zero gradually. However, since the diffu- 
sive terms are ignored in this work, the distribution function 
steepens, forming a more or less step function discontinuity 
at the boundary. This profile does not violate the continuity 
of the ion current, since it is determined by the gradient of 
the distribution ‘function at the very thin transition layer (dif- 
fusive terms), rather than its magnitude. 

Returning to Eq. (12), letting the magnetic field be in the 
z direction and substituting Eqs. (61, (8), (9), and (1 I), one 
can write 

-WC g=cv”*(vf )+nb6(v-vb) n(@iu,> I 

+ 
I 

~ex(Iv-vbl)~~v-~blf d3v 
I 

-Ptba,,(lV-vbl)lV--bffr (131 

where w,=eBIMc and cp is the azimuthal angle. Substitut- 
ing typical values for mirror machines, it can be seen that w, 
is much larger than the frequency of collisions and charge 
exchange, implying that @Y&J must be very small. Due to 
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the periodicity of variations with respect to q, this can be 
possible only if f consists of a large cp independent part and 
a small cp dependent part. Therefore, 

f(v) =fo(v) +fl(v), 

where fc(v)Bfi(v). Using this expansion, the zeroth-order 
form of Eq. (13) confirms the fact that fo(v) is independent 
of cp, and the first-order form yields 

-0, ~=CV,.(vfo)+n~a(v-v,) n(ff~u,) [ 

+ 1 %(IV--blw-blfo d”u] 
-nb~,,(IV--VbI)IV--VblfO. (14) 

We shall now adopt the spherical coordinates in velocity 
space, with 50 remaining as the azimuthal angle. Setting the 
beam velocity arbitrarily in x direction for perpendicular in- 
jection, one can write 

S(v-Vb)=Ub2S(U-Ub)S((P)~(e-rr/2). 

Using this expression and taking the average value of Eq. 
(14) with respect to angle cp, the left-hand side vanishes and 
one obtains 

~,,(lv-VblwVbl~SD (16) 

and 

n(aiU,> 

+ 
I 

a,,(lv-Vbl)f0(V)IV-vVbld3U 

Equation ( 15) can be solved for the regions u < u b and u > u b 
separately. Both solutions are of the form 

where K( 8) is an arbitrary function with two different values 
for u<ub and u>bb regions, and 

a(u,e)=exp I gwm. (19) 

The steady-state density involves the integration of fo( u, 0) 
in spherical coordinates, that is, the integral of 
v-’ a(u,e)du. Since g(u,e) is always a positive function of 
v , a( u , 0) > 1 and this integral will diverge at the upper limit, 
u = +~a. For a finite steady-state density, the arbitrary func- 
tion K(e) must therefore be zero for u > ub , hence 

0, for u<uo, 
fqe)U-3a(U,o), for UO<U<Ubp , (20) 

0, for u>ub, I 

where u. represents the velocity at the loss cone boundary. 
To evaluate the function K( t9), Eq. (15) is integrated 

over the velocity between the limits u = vb f E, where E is 
arbitrarily small. Substituting Eq. (20), this procedure yields 

K(e)= - 
AL@( e- r/2) 

dub,@ 
(21) 

Equation (21) indicates that the ion distribution is a disk-like 
distribution localized precisely at 0=r/2, implying that all 
velocities including u. are purely in the perpendicular direc- 
tion. This may appear to contradict with the existence of 
mirror losses. At this point, it is necessary to remember that, 
this form of the distribution function is the consequence of 
neglecting the ion-ion collisions, and it is hence an approxi- 
mation. In reality, there is a small angular spread to be given 
by Eq. (51), which justifies using the hyperbolic form of the 
loss cone boundary, where u. is basically determined by the 
ambipolar potential. 

Equations (20) and (21) constitute the forma1 solution 
for the ion distribution function. To obtain the explicit form, 
we shall start with investigating the constant term A. Substi- 
tuting Eqs. (20) and (21), Eq. (17) can be rewritten as 

A=- nbn(viue> 

27rcu; 

nd 
-I 

6(8-rr/2)a(U,e)Iv-Vbl(+ex(lV-vbl) 

+2rrc vdub9e) 

Xsin 8 de dcp dv. (22) 

After integrating over 0, the integral in this equation takes 
the form 

I= @(ub ,d2) I “b 
du v-‘a(~,~12) 

00 

I 

237 
X o Ure,u.ex(UreJd~, (23) 

ure~=Iv-vb[~=?r,2=(u2+u~-2~ub cos &‘2. (24) 

It can be seen from Eq. (16) that, the integration over cp in 
Eq. (23) is simply 27rCug(u,7r/2)lnb. Using this fact and 
Eq. (19), Eq. (23) can be written as 

I= g(u,rl2)du g(v,rrl2)du 1 2~C[a(ub,~/2)-a(uO,~r/2)] = nbff(Ub ,rf2) (25) 

Substituting this result into Eq. (22) yields 

A=- 
nbn(uiUJ4ub ,7-r/2) 

27Tcu~(Y(uo,T/2) * (26) 

Using Eqs. (20) (21), and (26), the ion distribution function 
for vo<u<ub can now be written as 
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fow3= nb?Z(@iV,)Lf(Ub,7T/2) +,e)qe-d2j 

27TCa(uo,7T/2) 1 dub,e)v3 * 
(27) 

The next task is to derive the explicit form of the func- 
tion a(~,@) or simply a(u,d2), due to the delta function in 
Eq. (27). An analytic expression for the charge exchange 
cross section a;, in the function a(v,7r/2), can be derived 
from the experimental data* by curve fitting techniques as 

uex= 10Pi4( 1 -0.5E0.06+2. IO-‘,?) cm2, (28) 
where E is the collision energy in eV for deuterium ions and 
neutrals, that is, 

E= 1.04. 10-‘2tV-Vb12. (29) 
Equation (28) agrees very well with the data, up to energies 
on the order of 400 keV, corresponding to particle energies of 
100 keV, which is applicable to all present technologies. 
Substituting Eqs. (28) and (29) into Eq. (16) yields 

g(v,7r/2)= u,,( 1 -o.o95u;;;2 

f2.08. 10-‘9u~Jd~, (30) 

where vreI is the term defined by Eq, (24). The integral in Eq. 
(30) can be evaluated numerically for a set of values of 
(u/ub), and the fohowing polynomial is found to represent 
g(u,d2) with an accuracy better than 95%: 

g(v,~/2)=(iZ~/C)(a~~-‘+a,-1-a2~+a3~2), (31) 
where &b/u,,,, 

ao= 10-14( I-0.095~lj~t~f2.08~ 10-‘9v& 

al= 10-‘4(0.048-7.6~10-3~~~‘2), 

a2= t0”4(0,23-0.026uSj~‘2+4.0S~ 10-‘9u;), 

ffj= 1.1’ lo-33v;. 

Substituting Eq. (31) into Eq. (19) yields 

(32) 

and the ion distribution, given by Eq. (27), can now be writ- 
ten in its final, explicit form as 

a3 v3-v; $77 ’ l II (33) 

It is to be remembered that, this function exists only for 
e=d2 and ueub + 

To complete the steady-state analysis, we shall now 
solve for the density n in a self-consistent way. Integrating 
the function fo( u) over the three-dimensional velocity space, 
from v = Ug to v = ub and equating to n yields 

= 
I 

’ @,UbU&b/“)-1 
“0 lvb 

=I?[ AV,(~)[a,5~(~)~2~(~)~3]}d~, (34) 

where h=nlC is substituted to distinguish the PE dependent 
terms. To explore the possibility of expanding the exponen- 
tial functions in this equation, the coefficients ai, will be 
investigated. For a wide range of beam energy from IO to 
100 keV, the ranges of these coefficients are found 
to be ao-10-‘4(0.13-0.03), a,--IO-‘*(0.2-O-3), 
a2 -- 10-‘5(0.03-0.12) and a3-10-‘6(0.1-0.9). Since 
.$G I and (vg/ub)+l, the exponents are always negative. It 
can then be seen that, the left-hand side of Eq. (34) starts at 
fx for (nb/ti) =O, decays very rapidly and asymptotically 
goes to zero for large (?$/fi). On the other hand, the right- 
hand side of Eq. (34) starts with a value of In( ub/uo) at 
(nbti?) =O, decays smoothly (with a finite slope, on the order 
Of hUba at small Hb/n) and asymptotically goes to zero 
also, for large (rib/i’‘). Furthermore, the slope of the left-hand 
side is more negative than the slope of the right-hand side, 
definitely for Small and large values of (nb/n), and very 
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likely for the entire range of this parameter. This picture 
implies that, there is only one solution of Eq. (34) for (nh/n j, 
and it is a very small quantity. With this intuition, the expo- 
nents in Eq. (34) are approximated as unity, and the follow- 
ing expression for the steady-state density is obtained: 

n=hubaonb h(ub/uO) /h( 1 + sj. (35) 

Having thus completed the steady-state analysis, the op- 
timum values of the controllable parameters in this equation 
will now be briefly discussed, The factor A is on the order of 
lo8 Tz’2 (eV). For the electron impact ionization rate, the 
expression given in Ref. 9 is adopted: 
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1.5.104- 
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Te= 100 ev 

o*5.*oI Te=20eV 7 ybgds) 
108 2.108 3.108 

FIG. 1. Dependence of (n/nJ on the beam velocity ub and electron tern- 
perature T, . 

(ap,)=5.3~10-* z”Q(z) 
i 

1.05~~‘~E(z+0.56) - 
zf0.56 cm3 s-l, (36) 

where z= 13.6/T, (eV) and E(z) is the exponential integral. 
According to this expression, the ionization rate is on the 
order of lo-* cm3 s-l at T,=20 eV and gradually increases 
upto 3~10~* cm3 s-’ at T,-- 150 eV, which covers adequately 
the typical range for the mirror machines. The lower bound 
for the velocity u. has a rather complicated dependence on 
the electron temperature. It can be estimated from the elec- 
trostatic potential, to correspond roughly to an energy, on the 
order of T, In (M/m,) In. A more rigorous treatment of this 
quantity is not necessary, since the term ln(vb/uo) is found 
to vary between 2 and 3, for a broad range of beam energy 
from 10 to 100 keV, and electron temperatures from 20 to 
100 eV. It can then safely be stated that the steady-state 
density increases with the electron temperature and the beam 
density. To explore the dependence on the beam velocity, the 
product ubaO should be considered together, since a0 is a 
function of u6 . Treating the term ln(ubluo) as a constant, it 
can easily be shown that the steady-state density increases 
with the term ubaa. Using Eq. (31), bbau is found to in- 
crease with ub , up to a value of 1.35’10-’ at bb=lO* 
cm s-l, then decrease until u b =6.5.10* cm s-l, and increase 
again for larger values of ub . However, since the latter value 
of ub already corresponds to a beam energy of 400 keV, the 
optimum value of the beam velocity should be around 10’ 
cm s-’ for the present technology. Then, choosing the opti- 
mum values as T,--80 eV and bb=lO* ems-‘, the maxi- 

mum value of the steady-state density is found to be on the 
order of lo4 nb . The dependence of (n/nb) on ub is illus- 
trated in Fig. 1, for a set of yalues of T, . 

As a final point in this work, we shall now attempt to 
provide justifications for the two assumptions made so far; 
equating the exponential functions in Eq. (34) to approxi- 
mately unity, and neglecting the ion-ion collisions in EQJ. 
(12). For the optimum values discussed above, it can be seen 
from Eqs. (31) and (35) that ~al/u0~--0.14 and 
Xubaa(nb/n)<l, respectively. The magnitudes Of the eXpO- 
nents in Eq. (34) are roughly ~bblarl(nb/n)(uu/ub) and 
Xublull(nb/n).$, for the left- and right-hand sides, respec- 
tively. Since uoeub and [ is considerably less than unity for 
a large range of the integral in Eq. (34), the maximum error 
resulting from the first assumption is less than lo%, which is 
insignificant. 

As far as the ion-ion collisions are concerned, the deri- 
vations are rather detailed and only the main points will be 
stated. The contribution of ion-ion collisions to the right- 
hand side of Eq. (12) can be written as 

-V,.J(i)= -u-2 d (u2J(‘))- 
au u 

& -$ (sin 8 J$,P). 

(37) 

Due to the expectation that the ion distribution has a 
very narrow angular spread (6 function in our former re- 
sults), the second term on the right-hand side of Eq. (37) is 
dominant. Starting with Eq. (2), one finally obtains the fol- 
lowing expression for this term: 

+ 
uu'ueu%e~ +G 

u3 i 
*u, y (u-uuurur)uf , 1 

(38) 

where C’=2rAe4/M2, ge=(f’lu)@7JtJ, g~=cflu’)Jf’! 
ad' G,,l=(~f/~')af'la~'-f'(afla~), ue,f=sin 8’cos 8 
Xcos(cp-cp’)-cos 6’ sin 0, uvvr =sin 19 sin 0’ cos(cp-cp’), 
uuer=sin 13~0s 13’ cos(cp--cp’)-cos Bsin 6’, u88t=sin 8sin 0’ 
+COS ec0s 8' COS(~-up') and u=(u~+u’~-~uu’u~~~)~~~. 

The steep derivative af ‘l&3’ in gb will be smoothened 
after the d 0’ integration, and G,, I is a well-behaving func- 
tion. Therefore, the main contribution is expected from the 
first term, that is, 

(39) 

Again, since f and f' are expected to be highly peaked 
around 0= rrl2 and 8’ = ~12, the contribution of the first term 
on the right-hand side of Eq. (39) will be very small, yielding 

J$i' FJ--.- (40) 
Y 

Accepting this expression as the total ion flux due to 
ion-ion collisions, substituting into Eq. (12), considering the 
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assumption that the ion distribution is highly peaked around 
&-n/2, and following the steps until Eq. (15), one obtains 

=AU2S(U-Ub)(r(e-rr/2)., 

Using g( u, ?r/2) instead of g( u, 0) and letting 

u”f = F exp 
I g(u,n/2)du, 

Eq. (41) takes the form, 

(411 

(42) 

d2F dF A&(u-ub)Li(8--m/2) 
H(u>R do”+ ;= a(u,7&?) ’ (43) 

where 

Wu,8)= g I 
f’ 
y d3uf, 

Again, using H( u, ~12) instead of H( u , 6J) and letting 

w(u)= 
I 

“H( ur,r12)dur, (45) 
0 

Eq. (43) can be written as 

d2F i?F .bZ~(U-Ub)~(8-7T/2) 

dsz- dw= H(u,7r/2)a(u,77Y2) ’ (46) 

This is a diffusion type of equation with the solution of the 
form, 

F= w-“~F~ exp[ -( B- B0)2/4w], (47) 

where F, and B. are constants, which can be determined by 
integrating Eq. (43) over u, between the limits u = ub+ 6, 
where E is arbitrarily small. This procedure yields 

F(Ub+E)-F(Ub-E)= 
AZ&q e- v/2) 

tu(ub ,d‘?) - (48) 

Since F(u) is proportional to fo, which is zero for u > ub , 
F(ub+E)=O, and 

F(u&)=- 
At@l( e- n/2) 

ff(Ub,?r/2) * (49) 

Returning to Eq. (47) and noting that w( ub) =O, one can 
write 

F(u~)=~~“~F~.~(B-@~). 

Comparing Eqs. (49) and (50) yields 

(501 

Fo=- 
Au; 

2n%Y(U~ ,rr/2) 
and B. = r/2. 

Substituting this result into Eq. (47) and using Eq. (42), one 
finally obtains 

f(be)=- 
Au;a(u,1r/2) 
u3a(ub ,,&,) [4Tw(u)1-*‘2 

x exp[ - (8- 7~+2)~/4~(~) J. 

It can easily be shown mat, neglecting the ion-ion col- 
lisions corresponds to the limit w =O, and the previous result 
is recovered exactly. The effect of these colhsions is then 
merely the broadening of the ion distribution function around 
8=rr/2. This broadening is obviously negligible for the 
higher velocities, since w(ub) =O. We shall now consider its 
maximum value, w( uo) + Using Eqs. (44) and (45), substitut- 
ing the former expression of f(u) for simplicity, and inte- 
grating numerically yields 

wtuok- 
1 hbT~‘2(eVj 

n * (52) 

For mirror machines, this quantity is considerably less 
than one, implying that the effect of ion-ion collisions on the 
ion distribution function can be neglected for a large range of 
velocities, except the relatively narrow range u-uo, justify- 
ing our second assumption. 

IV. DlSCUSSlON OF THE RESULTS 

In this work, the Vlasov-Boltzmann equation is written 
with the explicit expressions of all the relevant collisional 
and atomic processes in neutral-beam-injected mirrors, and 
solved analyticahy for the steady-state ion distribution func- 
tion A self-consistent, analytic expression for the steady- 
state density is also obtained, by integrating the distribution 
function over the velocity space. The nonlinear ion-ion col- 
lision term is treated as a perturbation, and its contribution is 
later shown to be a slight broadening of the distribution func- 
tion around the perpendicular direction, which gets notice- 
able only around u - u o. The steady-state density is found to 
increase linearly with the beam density and logarithmically 
with the ratio of the beam velocity to the escape velocity. 
The dependence on the escape velocity is therefore relatively 
weak, but it is worth noting that the steady-state density be- 
comes zero when these velocities are equal, and becomes 
infinite when the escape velocity is zero, as expected. Both 
the charge-exchange and electron impact ionization contrib- 
ute positively to the steady-state density, where the depen- 
dence on the Iatter process is again reIatively weak, due to 
the logarithmic behavior. The contribution of electron tem- 
perature is aiso positive, since it increases the ionization and 
decreases the electron drag on the ions. Finally, me steady- 
state density is found ‘to increase with the beam velocity up 
to a certain value, but decrease for any further increase in the 
beam velocity, due to the fact that the charge-exchange cross 
section decreases rapidly with the reIative velocity, after this 
quantity exceeds a certain value. 

It can be seen that the results are in agreement with the 
physical expectations, but no comparison with the previous 
works can be made, since the atomic processes have not been 
considered with their explicit, exact forms before. 
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